data-src="/wp-content/themes/yootheme/cache/we-are-bio-logo-6dbe9055.png"
data-src="/wp-content/themes/yootheme/cache/we-are-bio-logo-47f703ad.png"

草坪系统的生物刺激剂和植物健康产品。当前和未来的使用趋势

作者:Cale Bigelow1*,Mike Fidanza2,Erik Ervin3,和张勋忠4CaleBigelow1*, MikeFidanza2, ErikErvin3, and XunzhongZhang4
1PurdueUniversity-Department of Horticulture and Landscape Architecture,2The Pennsylvania State University,3University of Delaware-Department of Plant and Soil Sciences,4Virginia Tech-School of Plant and Environmental Sciences
*Correspondence:cbigelow@purdue.edu

 

data-src="/wp-content/themes/yootheme/cache/gazon_golf-a1af7991.jpeg"

概述。传统的生产或特殊作物农业系统倾向于在生长季节结束时关注可衡量的作物产量,最好是超过前一个生长季节的产量,与此不同的是,成功的草皮系统(如草坪、草皮、运动场和高尔夫草皮)有很多不同的、有时是模糊的成功措施。我想不出有谁在管理草皮时,会公开讨论他们要达到最大剪枝产量的意图。例如,将最大的草坪修剪产量作为目标,很可能会导致修剪需求大幅增加,劳动力和设备成本高昂,而且很可能导致整体草皮质量下降。相比之下,用于高尔夫或足球等运动的高质量草皮的管理重点是表面的坚固性。此外,管理目标还包括近距离修剪下的持久性(如<15毫米,高尔夫推杆果岭<3毫米),快速的滚球速度和最佳的生根,以促进安全立足并确保球员安全。与射出量相比,草皮经理以最大的季节性生根为目标并不稀奇。大多数草皮经理对任何可能使他们保持、促进和优化深层、"健康"、持久的根系的文化实践或产品都有敏锐的认识和兴趣。最后,植物对压力环境(如超高温、低温或急性/慢性干旱)、生物(如草皮害虫)和非生物(如强烈的交通/压实)条件的耐受能力和反弹能力也总是令人感兴趣。

草坪系统的独特之处在于,草皮是一种休闲作物,具有广泛的预期用途、文化管理强度和业主/用户期望。虽然大部分的生物刺激剂和植物健康产品通常被田径场/高尔夫市场的草皮行业所消费,但草坪草皮也有机会,它代表了最大的草皮种植面积。一般来说,如果一个草坪系统每年都能保持相对稳定的高水平的季节性绿色和嫩枝密度,就会被视为 "可接受"。然而,这往往是说起来容易做起来难。首先,许多草坪品种被种植在受到严重干扰的贫瘠的城市土壤上,许多承包商种植的草皮品种/栽培品种适应性差。这些因素造成了重大的管理挑战,特别是当植物受到极端环境条件的影响时。例如,美国绝大多数的草坪都没有灌溉,2021年8月24日的美国干旱监测报告(https://droughtmonitor.unl.edu/)列出了美国55%以上的地区正经历着异常的干旱状况,而25%以上的地区正遭受着极端干旱。如果这些情况继续下去,而植物在降水恢复时不能有弹性,将出现大规模的灾难性草皮损失,需要重新栽种。
那么,为什么这很重要?栽培像草坪这样的多年生草皮的最大好处之一是,与其他作物系统甚至本地草原植物相比,草坪草皮可以作为一个巨大的土壤稳定器和环境过滤器(Steinke等人,2007)。这个事实很重要,因为随着城市/郊区的扩大,人口将继续增长,在这些草坪、公园和休闲区,为保护土壤而选择的地面覆盖物将是草皮草。为了保持健康和活力,草皮植物必须至少获得最低水平的营养。然而,问题是,围绕着补充水的投入和需要较少肥料和杀虫剂投入的草坪,公众和监管压力越来越大。虽然仅仅消除肥料和水的投入似乎相对简单,但这是一种天真的做法。在很短的时间内,这些地区将失去明显的密度,更容易受到杂草的入侵,并可能造成严重的城市土壤侵蚀。虽然卓越的草皮培育工作可以帮助实现这些低投入的目标,但我们仍然经常在贫困的土壤上管理植物。要想在低投入的情况下获得成功,替代性的营养和仔细执行植物健康产品将是很重要的。因此,这似乎是当前和未来植物生物刺激剂材料和产品的一个机会。

What are Biostimulants? In the purest sense the word, a biostimulant can be defined as any material when applied to a plant that stimulates “life” (e.g. bio). Numerous materials fall this simple definition and it could even be argued that applying water to a plant is one example of a biostimulant since it “promotes life”. Research and use of plant biostimulants in turf systems is nothing new and work has been ongoing for over three decades. An early pioneer in biostimulant research was Dr. Richard E. Schmidt from Virginia Tech. His program pioneered many basic and applied aspects of biostimulants for many plants. A great deal of that research focused on exogenous applications of various natural and synthetic plant hormones with the intent of helping to optimize rooting (Liu et al. 1998), superior tolerance to soil-borne pests like nematodes (Sun et al., 1997), mitigate the effects of stresses like intense ultra-violet light (Schmidt and Zhang, 2001), heat-drought (Wang et al., 2012, 2013, 2014; Zhang and Schmidt, 1999,2000; Zhang et al., 2012,2013), salinity (Yan, 1993; Nabati et al. 1994), improving winter survival (Schmidt and Chalmers. 1993; Zhang et al., 2013), optimizing nutritional efficiency (Schmidt et al., 1999; Wang et al., 2011), or enhancing recovery from routine stressful mechanical cultural management practices (Bigelow et al., 2010).
Dr. Schmidt and with Dr. Xunzhong Zhang coined an initial operating definition for describing these various plant growth substances they were exploring that promoted plant growth without being nutrients, soil improvers or pesticides. They defined biostimulants as “materials that, in minute quantities, promote plant growth”. The use of the word minute in this definition was important and intended to differentiate the fact that these substances compared to traditional nutrients and/or soil amendments elicited a measurable and beneficial response at much lower application rates. They explained the plant biostimulation by way of hormonal effects and often plant protection against abiotic stress through various antioxidant production. Later, the term “metabolic enhancers” was also used but the important aspect was that something positive was happening to the plant beyond what mineral nutrition supplied.
More recently, the definition of biostimulants has been continually refined. In 2015, Patrick duJardin published the paper, “Plant biostimulants: Definition, concept, main categories and regulation”. In this article a plant biostimulant is defined as “any substance or microorganism applied to plants with the aim to enhance nutritional efficiency, abiotic stress tolerance and/or crop quality traits, regardless of its nutrient content.” The main categories of biostimulants proposed were: Humic and fulvic acids, protein hydrolysates and other N-containing compounds, seaweed extracts and botanicals, chitosan and other biopolymers, inorganic compounds, beneficial fungi and bacteria. These categories were important to define not only traditional biostimulants but also including the beneficial organisms that may elicit a positive plant health response while also helping to guide policymakers who might want to regulate these materials.
In the turf market segment, particularly in the USA, research into the biostimulant was continued at a high level by Drs. Ervin and Zhang who explored numerous aspects of biostimulant materials and their effect on turf physiology from the 2000’s to present. These projects included previously explored materials while including an expanded view of how various synthetic, non-mineral nutritional materials might also promote growth. It was postulated that these materials when applied in conjunction to the naturally biostimulants may produce additive and/or synergistic effect on turf plant growth. In addition to the categories named previously, Ervin (2013) described and suggested mechanisms for a wider range of additional products and chemistries commonly being applied to turf. For example, secondary plant hormones (e.g. salicylic acid) which can induce systemic acquired resistance (SAR) in response to plant pathogens (e.g. fungi, bacteria, insects, nematodes), similarly compounds like phosphites (PO3) that may stimulate phytoalexins (stress induced antimicrobial compounds) for health/diseases suppression. Additional products that could protect tissues from ultra-violet light injury like green pigments or compounds containing titanium dioxide and zinc oxide. Acibenzolar, which mimics salicylic acid effects to induce SAR. Synthetic fungicides like propiconazole had been previously explored by Dr. Schmidt with positive plant responses, but newer chemistries like pyraclostrobin was shown in a number of University research trials to slow down plant respiration and boost antioxidants under heat and drought stress. One interesting find was that pyraclostrobin naturally degrades to the amino acid tryptophan which is a precursor to the plant rooting hormone auxin. Amino acids like proline and glycine-betaine are often suggested for use as osmoregulators or dehydration avoidance compounds. The practice of supplementing amino acids via foliar applications in summer months is a long-standing suggested approach to improve plant health that might be experiencing energy depletion during stressful environmental conditions (e.g. the aim of mitigating seasonal summer decline for cool-season grasses). Lastly, the long standing well researched biostimulants like humic substances, auxin, seaweed and cytokinins are listed. A large fraction of biostimulant products marketed to the turf industry contain seaweed extract (SWE), or seaplant/kelp extract. SWE is naturally high in cytokinin (Crouch and VanStaden, 1993) and research by Schmidt, Ervin and Zhang has shown that SWE was similar to a synthetic cytokinin applications and that monthly application of SWE boosted antioxidant levels, less loss of root viability and improved heat/drought tolerance. Further, Ervin and Zhang showed that combining HA + SWE can provide better plant health during stressful conditions than using either alone. The turf industry contains a vast array of products that claim positive plant or soil health benefits, particularly under stress conditions. Choosing the right material for the intended specific plant benefit is truly important.

摘要:正确管理草皮系统可以成为一种巨大的环境资产。茂密、健康的草皮提供了许多美学、娱乐和环境方面的好处,最明显的是可以固定城市土壤和过滤城市水径流中的污染物。然而,它们是多年生植物系统,需要一定程度的营养和水的投入来保持活力和持久性。如果目标是用更少的传统投入来更可持续地管理它们,并使它们对环境压力更有弹性,那么生物刺激剂和其他植物健康产品就是实现这一目标的工具。研究生物刺激剂对草坪草的影响,可以使草坪营养的可持续发展方法取得进展。在适当的植物营养中,草地生理学的有机方面与矿物方面同样重要。同一栽培品种的植物在不同的生长反应下,其矿物质含量的差异相对较小。此外,矿物质营养与对压力的耐受性关联不大。然而,了解生物活性物质对草皮代谢的影响,可以使草皮管理者更好地调节草皮,使其能够承受环境压力。对矿物质功能和新陈代谢影响的了解,可以加强营养方面的最佳管理措施,以减轻许多草皮压力。利用这些知识,在不利环境下生长时,为生产高质量、有弹性的草皮提供了额外的工具"。
随着人们对养分和水的投入的关注和不断增加的审查,再加上有时严重的草皮压力,如因日益不可预测的气候条件而导致的长期干旱,将生物刺激剂应用于传统上不太受关注的领域,如草坪,可能会成为一种更主流的做法。无论哪种生物刺激剂/植物健康产品或计划,重要的是要指出,生物刺激剂不能替代健全的植物矿物营养计划。此外,如果目的是将生物刺激剂作为整体植物健康计划的一部分,草坪系统的研究表明,它们必须在环境压力之前应用,以优化其效益。在这一领域有令人振奋的创新,基于证据的努力将引导人们更好地理解这些材料将如何帮助维护和改善植物健康。

参考文献(点击)。

Bigelow, C., E.H. Ervin, X. Zhang, and A. Nichols*.2010.冷湿地区匍匐翦股颖果岭栽培恢复受液体肥料和生物刺激剂方案的预应力调节影响。在线。应用草皮科学》。 https://acsess.onlinelibrary.wiley.com/doi/abs/10.1094/ATS-2010-0727-01-BR

Crouch, I.J., and J. VanStaden.1993.商业海藻产品中存在植物生长调节剂的证据。植物生长调节剂13:21-29。

du Jardin, P. 2015。植物生物刺激剂。定义、概念、主要类别和监管。Scientia Horticulturae 196:3-14. doi:10.1016/j.scienta.2015.09.021

Ervin, E.H. 2013。植物健康产品。关于它们如何提高夏季抗压能力的概述。The Commonwealth Crier 9-11.

Liu, C., R.J. Cooper和D.S. Fisher。1998.腐殖质对匍匐翦股颖生根和营养成分的影响。Crop Sci. 38:1639-1644. https://doi.org/10.2135/cropsci1998.0011183X003800060037x

Nabati, D.A., RE.Schmidt和D.J. Parish。1994.通过植物生长调节剂和铁减轻肯塔基蓝草的盐度压力。Crop Science 43:198-202.

Schmidt, RE., and D.R. Chalmers.1993.夏末秋初在百慕大草上施用肥料和生物刺激剂。国际草坪草学会研究杂志7:715-721。

Schmidt, RE., and X. Zhang.2001.缓解暴露在土壤湿度压力或紫外线辐射下的草坪草的光化学活性下降。国际草皮协会研究杂志9:340-346。

Schmidt, R.E., X. Zhang和D.R. Chalmers。1999.光合作用和超氧化物歧化酶对在两种肥力水平下种植的匍匐翦股颖的反应。植物营养杂志》22:1763-1773。

Sun, H., RE.Schmidt和J.D. Eisenback 1997。海藻浓缩物对低土壤湿度下生长的受线虫感染的翦股颖的影响。国际草坪协会研究杂志8:1336-1342。

Steinke, K., J.C. Stier, W.R. Kussow和A. Thompson。2007.草原和草皮缓冲带用于控制铺面的径流。Journ.Environ.Qual.36:426-439.

Wang, K., S. Okumoto, X. Zhang, and E. Ervin.2011.匍匐翦股颖中主要氮代谢相关酶和代谢物的昼夜模式以及细胞分裂素和硝酸盐的影响。Crop Sci. 51(5):1-10.

Wang, K., X. Zhang, and E. Ervin.2012.高温下匍匐翦股颖根部和芽部的抗氧化反应。氮素和细胞分裂素的影响。植物生理学杂志》。169:492-500.

Wang, K., X. Zhang, and E. Ervin.2013.硝酸盐和细胞分裂素对超优温度下匍匐翦股颖的影响。Journal of Plant Nutrition.36(10):1549-1564.
Wang, K., X. Zhang, J.M. Goatley, and E.H. Ervin.2014.热休克蛋白与不同氮水平下匍匐翦股颖的热胁迫耐受性的关系。PLOS One,9(7):e102914。

Winston, G.W 1990.细胞生产和防御中自由基形成的生理化学基础。 第57-86页。在。R.G. Alsher和J.R. Cumming(编辑),植物的压力反应。适应性和适应机制。Wiley-Liss, New York.

Yan, J. 1993.植物生长调节剂对草坪草极性脂质组成的影响,对干旱和盐度压力的耐受性和营养效率。博士学位论文。弗吉尼亚理工学院和州立大学作物和土壤环境科学系,布莱克斯堡。

Zhang X., and R.E. Schmidt.1999.遭受干旱的肯塔基蓝草对含激素产品的抗氧化反应。Crop Science 39:545-551。

Zhang, X., and RE.Schmidt.2000.含有激素的产品对遭受干旱的高羊茅和匍匐翦股颖抗氧化状态的影响。Crop Science 40:1344-1348.

Zhang, X., D. Zhou, E.H. Ervin, G.K. Evanylo, D. Cataldi, and J. Li。2012.生物固体对高羊茅耐旱性相关的抗氧化剂代谢的影响。HortScience。47(10):1550-1555.

Zhang, X., P. Summer, and E.H. Ervin.2013.叶面氨基酸类肥料对匍匐翦股颖抗旱性的影响。Int.Turfgrass Soc. Res.J. 12:429-436.

Zhang, X., E.H. Ervin, and R.E. Schmidt.2013.两种紫云英草栽培品种对冷适应的抗氧化酶和光合作用反应。Int.Turfgrass Soc. Res.J. 12:437-444.